41 research outputs found

    From quasiperiodic partial synchronization to collective chaos in populations of inhibitory neurons with delay

    Get PDF
    Collective chaos is shown to emerge, via a period-doubling cascade, from quasiperiodic partial synchronization in a population of identical inhibitory neurons with delayed global coupling. This system is thoroughly investigated by means of an exact model of the macroscopic dynamics, valid in the thermodynamic limit. The collective chaotic state is reproduced numerically with a finite population, and persists in the presence of weak heterogeneities. Finally, the relationship of the model's dynamics with fast neuronal oscillations is discussed.Comment: 5 page

    Collective synchronization in the presence of reactive coupling and shear diversity

    Get PDF
    We analyze the synchronization dynamics of a model obtained from the phase reduction of the mean-field complex Ginzburg-Landau equation with heterogeneity. We present exact results that uncover the role of dissipative and reactive couplings on the synchronization transition when shears and natural frequencies are independently distributed. As it occurs in the purely dissipative case, an excess of shear diversity prevents the onset of synchronization, but this does not hold true if coupling is purely reactive. In this case the synchronization threshold turns out to depend on the mean of the shear distribution, but not on all the other distribution's moments.Comment: To appear in Phys. Rev.

    Time delay in the Kuramoto model with bimodal frequency distribution

    Get PDF
    5 pages.-- PACS numbers: 05.45.Xt, 89.75.Fb, 02.30.Ks.-- ArXiv pre-print: http://arxiv.org/abs/nlin.AO/0606045.-- Final full-text version of the paper available at: http://dx.doi.org/10.1103/PhysRevE.74.056201.We investigate the effects of a time-delayed all-to-all coupling scheme in a large population of oscillators with natural frequencies following a bimodal distribution. The regions of parameter space corresponding to synchronized and incoherent solutions are obtained both numerically and analytically for particular frequency distributions. In particular, we find that bimodality introduces a new time scale that results in a quasiperiodic disposition of the regions of incoherence.E. M. was partially supported by the European research project EmCAP (FP6-IST, Contract No. 013123). J. S. was supported by Deutsche Forschungsgemeinschaft project SCH-1642/1-1

    Time delay in the Kuramoto model with bimodal frequency distribution

    Get PDF
    We investigate the effects of a time-delayed all-to-all coupling scheme in a large population of oscillators with natural frequencies following a bimodal distribution. The regions of parameter space corresponding to synchronized and incoherent solutions are obtained both numerically and analytically for particular frequency distributions. In particular we find that bimodality introduces a new time scale that results in a quasiperiodic disposition of the regions of incoherence.Comment: 5 pages, 4 figure

    Exact firing rate model reveals the differential effects of chemical versus electrical synapses in spiking networks

    Get PDF
    Chemical and electrical synapses shape the dynamics of neuronal networks. Numerous theoretical studies have investigated how each of these types of synapses contributes to the generation of neuronal oscillations, but their combined effect is less understood. This limitation is further magnified by the impossibility of traditional neuronal mean-field models—also known as firing rate models or firing rate equations—to account for electrical synapses. Here, we introduce a firing rate model that exactly describes the mean-field dynamics of heterogeneous populations of quadratic integrate-and-fire (QIF) neurons with both chemical and electrical synapses. The mathematical analysis of the firing rate model reveals a well-established bifurcation scenario for networks with chemical synapses, characterized by a codimension-2 cusp point and persistent states for strong recurrent excitatory coupling. The inclusion of electrical coupling generally implies neuronal synchrony by virtue of a supercritical Hopf bifurcation. This transforms the cusp scenario into a bifurcation scenario characterized by three codimension-2 points (cusp, Takens-Bogdanov, and saddle-node separatrix loop), which greatly reduces the possibility for persistent states. This is generic for heterogeneous QIF networks with both chemical and electrical couplings. Our results agree with several numerical studies on the dynamics of large networks of heterogeneous spiking neurons with electrical and chemical couplings

    On the existence of hysteresis in the Kuramoto model with bimodal frequency distributions

    Get PDF
    We investigate the transition to synchronization in the Kuramoto model with bimodal distributions of the natural frequencies. Previous studies have concluded that the model exhibits a hysteretic phase transition if the bimodal distribution is close to a unimodal one, due to the shallowness the central dip. Here we show that proximity to the unimodal-bimodal border does not necessarily imply hysteresis when the width, but not the depth, of the central dip tends to zero. We draw this conclusion from a detailed study of the Kuramoto model with a suitable family of bimodal distributions

    The role of fixed delays in neuronal rate models

    Get PDF
    Fixed delays in neuronal interactions arise through synaptic and dendritic processing. Previous work has shown that such delays, which play an important role in shaping the dynamics of networks of large numbers of spiking neurons with continuous synaptic kinetics, can be taken into account with a rate model through the addition of an explicit, fixed delay. Here we extend this work to account for arbitrary symmetric patterns of synaptic connectivity and generic nonlinear transfer functions. Specifically, we conduct a weakly nonlinear analysis of the dynamical states arising via primary instabilities of the stationary uniform state. In this way we determine analytically how the nature and stability of these states depend on the choice of transfer function and connectivity. While this dependence is, in general, nontrivial, we make use of the smallness of the ratio in the delay in neuronal interactions to the effective time constant of integration to arrive at two general observations of physiological relevance. These are: 1 - fast oscillations are always supercritical for realistic transfer functions. 2 - Traveling waves are preferred over standing waves given plausible patterns of local connectivity

    Existence of hysteresis in the Kuramoto model with bimodal frequency distributions

    Full text link
    We investigate the transition to synchronization in the Kuramoto model with bimodal distributions of the natural frequencies. Previous studies have concluded that the model exhibits a hysteretic phase transition if the bimodal distribution is close to a unimodal one, due to the shallowness the central dip. Here we show that proximity to the unimodal-bimodal border does not necessarily imply hysteresis when the width, but not the depth, of the central dip tends to zero. We draw this conclusion from a detailed study of the Kuramoto model with a suitable family of bimodal distributions.Comment: 9 pages, 5 figures, to appear in Physical Review
    corecore